Home > Absorbing Material > The working principle of ferrite absorbing materials

The working principle of ferrite absorbing materials

2021-02-10 555
Ferrite absorbing material is a kind of absorbing material with excellent performance, which is both a magnetic medium with magnetic absorption and a dielectric with electric absorption.

In the low frequency range, the loss of ferrite mainly comes from the hysteresis effect, the eddy current effect and the magnetic aftereffect. In the high frequency range, the loss of the ferrite to the electromagnetic wave mainly comes from natural resonance loss and domain wall resonance. Loss and dielectric loss. (Electrical loss mechanism) Dielectric loss is the main cause of electrical loss in microwave ferrites. Charges cannot pass through the dielectric in the electric field like a conductor, but the charge particles will shift each other under the action of the electric field, causing the positive and negative charge centers to separate , Forming many electric dipoles, this process is polarization. In the process of polarization, the part of the charge lost in the form of heat causes electrical loss.

It is generally believed that the polarization of polycrystalline electromagnetic media mainly comes from four mechanisms: electronic polarization, ion polarization, inherent electric dipole orientation polarization and interface polarization.

Lattice vacancies, the inhomogeneity of the dielectric body, and the existence of high conductivity are the main reasons for the dielectric loss caused by the inherent galvanic orientation polarization; the main reason for the dielectric loss caused by the interface polarization is the zero of the high conductivity Phase dispersion distribution. The dielectric loss of ferrite is basically due to the excess of electrons caused by the existence of two valence states of iron, that is, the sum of the electrons. The electrons will run from one iron ion to another iron ion, and some will be caused in the process. Conduction and dielectric loss.


The working principle of ferrite absorbing materials


(Magnetic loss mechanism) Magnetic loss is the energy loss produced by magnetic materials in an alternating magnetic field, which is mainly caused by hysteresis loss, eddy current loss and residual loss. (Hysteresis loss) Hysteresis loss refers to the loss of part of the energy supplied by the external magnetic field by overcoming various damping effects during the dynamic magnetization process of the irreversible jump.

The area of the hysteresis loop is numerically equal to the value of the hysteresis loss per magnetization cycle, that is: the method to reduce the hysteresis loss is to reduce the coercive force of the ferromagnetic material, and the reduction of the coercive force makes the hysteresis loop narrower , Its so-called area is reduced, thereby reducing hysteresis loss. (Eddy current loss) When a conductor is placed in a changing magnetic field, an induced current or eddy current will be generated inside the conductor. The eddy current cannot be conveyed out like the current in the wire, but will cause the magnetic core to heat up and cause energy loss, that is, eddy current loss.

In addition, frequency has little effect on ferrite eddy current loss. (Residual loss) Residual loss refers to all losses except eddy current loss and hysteresis loss, which come from the magnetization relaxation process. Different materials have different residual loss mechanisms in different frequency ranges due to different mechanisms of magnetization relaxation process.

In the low-frequency weak field, the residual loss is mainly the magnetic after-effect loss. In the case of high frequency, dimensional resonance loss, domain wall resonance loss and natural resonance loss all belong to the category of residual loss.

The ferrite sheet researched by Yachi Industry has played an important role in today's electronic digital products, solving the problems of magnetic isolation and interference resistance such as RFID, NFC, wireless charging, and notebook computers.

In summary, to obtain a high loss ferrite absorbent, the ways are: increase the saturation magnetization of the ferromagnetic body; increase the impedance coefficient; reduce the magnetocrystalline anisotropy field; due to the resonance frequency and the magnetocrystalline anisotropy The field of anisotropy is proportional, so the absorption band of the material can be controlled by changing the magnetocrystalline anisotropy field of the ferromagnet. In the actual preparation operation, it can be controlled by changing the composition of the material and the preparation process.
Absorbing Material:https://www.zeshuiplatform.com/
Like to share
If you like our information, please share to your friends know.

0

Links:
Website building SEO absorbing material USB Microphone CN ZeShui Passive Speaker Bluetooth Speaker Usb fan Ketone Breath Meter
Service:
Amazon Shopee USB Microphone Computer Microphone Wooden Speakers Wooden Headphones Absorbing Material Shielding Material
Shenzhen ZeShui Trading Co., Ltd. All rights reserved ©2021